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Abstract 

Some algebraic properties of the generalised Pauli matrices of Barut, Muzinich and 
Williams are derived and used to demonstrate the equivalence of the zero-mass equations 
of  Nelson and Good with those of Dirac, Fierz and Pauli. The conserved rank four tensor 
of the spin-2 theory is shown to have the structure of Bel's tensor for a gravitational field 
satisfying Einstein's empty space equations, in the linearised version of general relativity. 

1. Introduction 

Recently, Nelson & Good (1969) have given a new description ofmassless 
spin-j particles in terms of the relativistic wave equation 

~ , ~ 2 . . . ~  ~ / ~ x ~  = 0 (1.1) 

where �9 is a (2j + 1)-component quantity transforming according to the 
(j,0) representation of the inhomogeneous proper Lorentz group (L) and 
the g~"'"usa are a set of  (2j + 1) • (2j + 1) matrices, completely symmetric 
in the tensor index set and traceless in the sense that 

g~s~VPs'"P~J = 0 (1.2) 

(guy is the flat-space metric with non-vanishing components - g l l  = -g22 = 
-g33 = g44 = 1, which will be used as raising and lowering operator for 
tensor indices). Let the matrix for the (j, 0) representation of  an element A 
of  L be denoted by ~<J)[A]. The infinitesimal generators M~,v = -Mv~, can 
be taken to be 

( n  2 3 , M  3 1 , M  12) ~- s 
(1.3) 

( M  14, M 24, M 34) = is  

The three s being the Hermitian generators of  the spin-j representation of 
the three-dimensional rotation subgroup (Brink & Satchler, 1962), 

[S3tl)]m= m~l)m (m=- - j , - - j  + l , ' " j )  
[ s + c : i ) ] m + l = { ( j T m ) ( j : z l : m + l ) } l / 2 U p  m ( s ~  = s l  4. i s2)  (1 .4)  

Copyright �9 1972 Plenum Publishing Compafiy Limited. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic mechanical, photo- 
copying, microfilming, recording or otherwise, without written permission of Plenum Publishing Company 
Limited. 

349 



350 ERIC A. LORD 

The (0,j) representation is given by ~(J) = (_~(s),)-i and the most general 
representation of L is ( j , k )  given by ~(s) | ~(k) (Corson, 1953). 

The covariance of (1. l) under x u -+ A f  x v, ~b -+ ~(J~[A] q~ is ensured by 
requiring 

~S~[A] s~'"'~2s ~J~*[A] = ( A - I ) ~  " " " ~ A - I ~ J  S~ ' " '~  (1.5) \ JV2J * 

As shown by Nelson and Good, this requirement is sufficient to determine 
the gm...ms uniquely, to within an overall numerical factor. The quantities 
gm...,:s and the relation (1.5), together with associated quantities sU~'""2~ 
defined by 

~(S)[A] s"~'"",s ~(s)*[A] = ( A - I ) ~  . . . CA-a~",J s"""",~ (1.5') k IV2. l 

were first introduced by Barut et aL (1963). They have been discussed by 
Weinberg (1964) and, in connection with formulations of wave equations 
for particles with non-vanishing mass, by Williams (1964) and by Sankara- 
narayanan & Good (1965). In Barnet eta!. (1963) they are constructed from 
direct products of Pauli matrices by using Clebsch-Gordon coefficients to 
pick out the spin-j part from the sets of two-fold (spin-~) spinor indices 
occurring in the direct products. The method described below is simpler in 
that the Clebsch-Gordon coefficients are not used explicitly. This is possible 
because we shall use the characterisation of (j,0) as a quantity with a 
completely symmetric set of two-fold spinor indices, rather than as a 
(2j+ 1)-component column as implied by (1.3) and (1.4). Let D[A] be the 
(�89 0) representation of L and consider a quantity 

~A 1 ...A2J 

completely symmetric in its two-fold indices and transforming according to 

~AI , , ,A]  , ~ D~II '**  D ~ ) B I * . * B 2  j (1.6) 

Because of the symmetry, a particular component will be specified by the 
number of l's and the number of 2's in its index set (nl and nz with 
nl + n2 = nl + n2) and can be written ~(nl nz). Writing 2m = nl -n2,  the 
2j + 1 component column 

(~m 2.i 1/2 = (S+m) ~(nln2) ( m = - - j , - - j + l , . . . j )  (1.7) 

will have the ~(s) transformation law defined by (1.3) and (1.4). The proof 
is straightforward so we shall omit it. 

2. Construction o f  Generalised Pauli Matrices 

Denoting the three Pauli matrices by ~ and the spinor metric (_1 i) by ~, we 
define 

~ = (t~, 1) } (2.1) 
o,' . ( ~ . y  ~-~ = ( - a ,  1) 
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which satisfy 

and we define 

�89 + ~.6/1) =g . . . l l }  
5(6/1 or, + 6~ %) = g/iv. 

(2.2) 

then j (2.3) 
o.~ = _(~,~), = �89 ~ - o v ~.) 

The (5, 0) representation D[A]  satisfies the well-known relation 

Da/1 D t = (A-I)~ a" (2.4) 

from which we obtain 
/36"/3t = (A-I)~ 6 ~ (2.5) 

for the (0,5) representation/3 = (Dr) -l. Equation (2.4) is easily verified by 
taking an infinitesimal A and showing that the generators of  D must be 
�89 which satisfy (1.3) with s = �89 

We distinguish four kinds of  two-component spinor index: 

(a) Ca denoting the transformation law r -+ Dr  
(b) CA denoting the transformation law r ~ CD -1 = / 3 * r  
(c) Xa denoting the transformation law X -+ D* X = X/3-1 (2.6) 
(d) X a denoting the transformation law X -~  x (D*)  -~ = D X  

Because ED = (Dr) -1 ~ for any unimodular D, E can be used as raising and 
lowering operator for spinor indices--(a) and (b) are equivalent, as are (c) 
and (d). 

Now define 
SaU~ auaa/a/2, -aB -An = s/1 = % /~/2 (2.7) 

/ 11"" /12J  . . / 1 1 .  �9 �9 �9 1121 . 
SAI'"A2JBI'"B2J S(A1BI S~2JB2J)] (2.8) 
~AI'"A2jBI'"B2j .~( /~IB1 . �9 ~A2JB2J) I 

/11 ""/12J ~/11 /12J 

where the brackets denote complete symmetrisation in the two sets A and B, 
separately. These quantities are obviously symmetric in their tensor indices 
and satisfy (1.2) on account of  

/1 ~ _ ~  =AB =cD c~c ~BO (2.9) g~v SA~ SOb = {AC ~Bb' ~ a H ~l~ = 

Also, from (2.4) and (2.5) it follows that, if we convert the spinor index sets 
to a single (2j + 1)-fold indices m and rh according to the prescription (1.7), 
the resulting quantities 

S/11""/12J -hm mh , Sial ""/12J 

will satisfy (1.5) and (1.5'). Thus the quantities (2.8) are effectively the 
Barut-Muzinich-Williams quantities, but expressed in a notation that 
makes their structure readily apparent, and also makes them easier to 
work with. 
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3. Properties o f  the Matrices 

Let t. be an arbitrary tensor of rank 2j and denote its completely lal'"PL2J 1 
symmetric traceless part oy 

t{tq-,-~2 s} 

The actual construction of t~m...m~ ~ from tvl...~ j is quite complex, but will 
not be needed here. We define 

3!.  ~,-''~.2~1 = 3,~ . . .  8y2~, ( 3 . 1 )  ~ l ' " ~ 2 j ~  ~.~'1 b'2J? 

which is effectively the unit matrix for the space of completely symmetric 
traceless tensors. We can also define raising and lowering operators in this 
space, constructed from ~Tu,v, ""~h,,Jv2s" It will be convenient to write a 
completely symmetric, traceless, rank 2j tensor index set {t~l.. "/~zj) as a 
single (2 j+  1)2-fold index (/~). Thus (3.1) is just o(v ),~(~) and the generalised 
Pauli matrices are 

S(.t~) -~,n nm, S(la) 

For the generalised spinor index sets, we can define the unit matrix ~ by 
completely symmetrising the (2j + 1)-fold direct products of 3]: 

(AI 2./ 

and applying the prescription (1.7). Raising and lowering operators 
Cm, = C "" = Ce~ = C ~ are obtained from 2j-fold direct product of ~aB also 
by symmetrising separately in the A's and the B's and applying (1.7). We 
easily obtain 

c~ .  = (_)j+m 8~_ .  (3.2) 

which identifies C,,, as just a Wigner 1-j symbol, as we might have expected 
(Brink & Satchler, 1962). The identity 6~ = E(cr~')r e ~ gives 

g (tt) = C ( s ( t Q )  T C - 1  (3.3) 

Another easily proved identity is 

s(~) ~ -  = 3am 3~ (3.4) mh ~ 

which follows from the Pauli matrix identity (2.10), 

= 8,~ 8a s ~ c o  o c 

Given a spinor q~" belonging to the (j,j) representation we can define from 
it a completely symmetric traceless rank 2j tensor 

~ ( / J )  : S(m~) (j~hm (3.5) 

(i.e. : q~(~) = trace s(~)~b in matrix notation). Equation (3.4) shows that q~n,n 
can be recovered from the tensor: 

~ m  __ ghm r (3.6) o(/O 
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This corresponds to the following two results 

(a) A completely symmetric traceless rank 2j tensor belongs to the ( j , j )  
representation of L. 

(b) The (2 j+  1) 2 Barut-Muzinich-Williams matrices are linearly 
independent. 

Consider the 'scalar product' 

of two traceless symmetric tensors. From the above equations, this is just 

X ~ Y~ 

where 
X a"-- s~)"h" Xc.), y.,, = ~c~,)~.n, Y~) (3.7) 

whence it is easy to obtain 

~,)- _ c.)  ~ m _ ~ ( . )  (3 .8)  t rs  s(v) - s,,, s(,) - ,,(v) 

A more complicated relation that we shall make use of  is the following 
which contains the spinj  and the spinj  + 1 quantities: 

, m ' " t , ~ j .  . g ~ , . . . t J 2 j c c . . c , j = t r  1)3(c,...3c~]sav)~ (3.9) 
S24A1...242jB~ l ...B23 pl.../ ,t2$ x,d 

To prove this we need the identity 
. An __ r 3 a . ) -  N(n)r  (3.10) 

where r is any (�89 0) spinor and N is just a number. That this must be valid 
is fairly obvious. We require the number N. Write 

1 AI'"An ~ Al '"An .,. 
r = y -f + + + ' "  "] 

(3.11) 
1 

--  n + 1 [(n + 1) q~a + n N ( n  - 1) ~b,~] 

This gives the formula N ( n )  = 1 + n N ( n  - 1)/(n + 1) and since N(1) = 3/2 
we find 

N ( n )  = 1 + n / 2  (3.12) 

Now we have 

s b q u t " ' / ~ 2 /  ~ ~ ~BI'"B2jCI'"C2J ~___ S~A~,S~I"'~2J e, r ,~BI'"I~2JCI""C2j 
AXI '"A2jBBI '"B2j  Itll" '~t2j ~ao al"'~t2j~l~ " l " ' ~ 2 J  

which is just (3.9). Multiplying by $~c, contracting on B and symmetrising 
the C's gives (substituting 2j for 2j + 1), 

SlAI"2'"I)2]. , ~I"'J)2.1CI'"C')J = ( J +  �89 ( s " ~ p )  ( A l g a  2 AI"'A~jBI '"B2j  pv2""v2j 
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which gives, since s~ g p = �89 q- tr#P), 

s ~2"""2~ ~2...~. j = ( 2J-~-l ) ( g~O - (1/j) iM ~" ) (3.13) 

which is the generalisation of  the Pauli matrix relations (2.2) and (2.3). 

4. Zero Restmass Equations 

The equations of Dirac (1936) and Pauli & Fierz (1939) for zero restmass 
and spin-j are 

0u ~u~a,kAa2...A~ = 0 (4.1) 

where ~ is completely symmetric. That the equations (1.1) of  Nelson and 
Good are equivalent to (4.1) is now self-evident in terms of  the formalism 
we have set up. Multiply (4.1) by 

1~2""1~2j 

and symmetrise the ~'s. We get 

0 ~t~I"'%~A,'"A2~. . = 0 (4.2) 
t t ~2""I-t21 r a l ' " ~ l j  

which is just (1.1); conversely, multiplying (4.2) by 

and using (3.9) we get back the equations (4.1). 
As is well known, f o r j  = 1 equations (4.1) [or equivalently (1.1)] are just 

Maxwell's equations. Given a symmetric SAB, define 

r = �88 %,An, q~A. = �89 cr~ (4.3) 

~bu, is self-dual, so that written as the sum of a real and an imaginary tensor 
it is 

Cu, =fu ,  + �89 p~ =f~ ,  + f ~  (4.4) 

The complex conjugate of  Ca~ is 

"--~p,, a>in, Ct,, =f~ ,  - f : ,  (4.5) 

The traceless symmetric tensor 

t ,  =~btg,  tb (4.6) 

satisfies ~ut t'" = 0 on account of  (1.1), and as pointed out by Nelson and 
Good, is the energy-momentum tensor of the electromagnetic field. It is 
instructive, and will be useful for dealing with the j  = 2 case, to see how this 
works out in our present notation. We use the identities 

cru" o'P = --ie~ ~~ cra + gpv cr # _ gpt~ cry I (4.7) 
6 ~'~ 6P = ie u"oa 6 a + gpV 6lJ _ gpt a ~v 
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to obtain 

q~a 5pac = -2q~*.p 5~cl (4.8) 

and hence 

~a ~ qS~ a a~A 6 ~ a  = 8q~p~ qS*P~ (4.9) 

The tensor (4.6) can be written 

1 A *  ~ A  -AB  I 

__ 1,1.*. A aBA ~ B  
-2"t'B v (YvBA 

= 4 ( L , f p  u -f~fiDp,) + 4(f~fo -fovfiDo) 

The two terms in brackets are respectively real and imaginary, but t , .  in 
(4.6) is plainly real. so the second term must be identically zero. This also 
follows from the fact that it is skew in t~v. The remaining term can be 
reformulated with the aid of the identity 

EOv= ~ - -  " r w / q  

to give 

tuv = 8(f0~fp u -- �88 o~) (4.10) 

We are now in a position to deal with the spin-2 case. Given a completely 
symmetric rank 4 spinor we can define 

~txvpa 1 A ~AB ~CD~ 
= -~'aRciD .. , ,  ~0~ ~ (4.11) 

~)ABCD 1 ~ ~l~v ~ p e  l "4'ff ttvpa ~AB ~CID I 

The tensor is self-dual in each index pair ~v) ,  (pa), symmetric under 
interchange of the pairs, and is traceless for contraction on any two indices. 
Split into its real and imaginary parts it has the form 

1 .  ~z/3 D (%~p~ = R~p, + -~l%~t3 Ru~ = R~o~ + Ru~o~ (4.12) 

where the real tensor Ru,o, has also the symmetries of a Riemann tensor, 
and is traceless. The equations (1.1) in terms of this tensor are just the 
'linearised Bianchi identities' 

O~Ro,a~ + OoR~a~ + O~Ruoa~ = 0 (4.13) 

A more detailed treatment is given in (Lord, 1971). Our present aim is to 
express the traceless symmetric tensor 

tu.oa = @* au.pa ~ (4.14) 

of the j = 2 theory in terms of  Ru~0.. It can be rewritten 
1 * -_AA ---~B -~,C -1)]9 .I. 

tu~Pa = ~(~ (4.15) Op o v (Fp (Y~ t/JABCD 
1 ~*Ar -BA -DC 

23 
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where 
* l J *  - H v  
_,IIBOD ~ 4~g lavp3 G'~[3 ~ 

Using (4.9) twice the expression (4.15) is seen to be 

t , , ,a = 4r r 
D D ~  /~ 

As in the electromagnetic case, the second term must be identically zero, 
since it is imaginary. Hence we have 

~ o  oD~,/3 ~ (4.16) 

Now a tensor of just this form has been investigated by several authors in 
connection with the energy-momentum of a gravitational field (Bel, 1959; 
Lichnerowicz, 1958; Chevreton, 1964). Bel's tensor is a rank four tensor 

__ O~ R D  . ~ D  = [J -!- DRD . D R D  ~ B p v p A - -  �89 a f3- VRpctv[ jDRp~hg - -  = - ~ u = v p ~ -  p ^ - -  - - / ~ = v p  = -  p a ,, 

where in this case Ru,pa is a Riemann tensor, not necessarily traceless. In 
(4.17) we have used the notation 

D I "  D 1 "  ~f l  
R~,~pa = -~1%;~=t3 R~, =~, Ru,,oa = ~t%~=/3 R pa (4.18) 

D D R~,,pa = --~4 %v,r eoar~ R =[~e~ 

Bel's tensor in general is not completely symmetric and traceless but has the 
partial symmetries 

B,vp~ = B~uo o = B p ~ ;  Bu~pP = 0 (4.19) 

It is completely symmetric and traceless in the particular case when 
Einstein's empty space equations R ~  = 0 are satisfied. For a traceless 
Riemann tensor, 

o a (4.20) 

As is easily verified by taking particular values for the indices. Thus, in the 
case when Einstein's equations for empty space are satisfied, 

(4.21) Bt~vph = Jt~vp,~ 

with tu~0a given by (4.16). 
This result is highly suggestive of a connection between Einstein's theory 

and the equations (1.1) for j  = 2. However, (1.1) is a flat space theory so that 
Ru~aa cannot be interpreted as a Riemann tensor. In a curved space-time 
the derivative of the spinor would become a covariant derivative, Fock- 
Ivanenko coefficients would appear in (I. 1) and (4.13) would become the 
Bianchi identity. A rigorous treatment of the relation between Einstein's 
theory and the linear massless spin-2 theory is given in (Lord, 1971). An 
expression for Bel's tensor in the ease Ru~ v~ 0 that is closely related to (4.21) 
has been previously obtained (Lord, 1967). 
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